1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
use crate::WaveletTree;
use bio::data_structures::rank_select::RankSelect;
use bv::BitVec;
use serde::{Deserialize, Serialize};
use std::fmt;
use std::iter::FromIterator;

/// A WaveletTree with Pointers is represented here
#[derive(Serialize, Deserialize, PartialEq, Debug)]
pub struct WaveletTreePointer<T: PartialEq + Copy> {
    /// The WaveletTree uses a secondary struct which is recursive
    root_node: Box<WaveletTreeNode>,
    /// Only on this top level the alphabet will be saved
    alphabet: Vec<T>,
}

//This will be the tree structure itself, with the bit vector as data
#[derive(Serialize, Deserialize)]
struct WaveletTreeNode {
    bit_vec: RankSelect,
    left_child: Option<Box<WaveletTreeNode>>,
    right_child: Option<Box<WaveletTreeNode>>,
}

impl WaveletTreeNode {
    fn new<T: PartialEq + Copy>(
        input_string: Vec<T>,
        alphabet: &[T],
    ) -> Option<Box<WaveletTreeNode>> {
        // When the alphabet only consists of two symbols, no new child nodes are needed.
        // The resulting data would only consist of zeros
        if alphabet.len() >= 2 {
            //split alphabet
            let (left_alphabet, right_alphabet) = alphabet.split_at(alphabet.len() / 2);

            //fill partial strings
            let left_string: Vec<T> = input_string
                .clone()
                .into_iter()
                .filter(|c| left_alphabet.contains(c))
                .collect();
            let right_string: Vec<T> = input_string
                .clone()
                .into_iter()
                .filter(|c| right_alphabet.contains(c))
                .collect();
            //create bitvector of string length
            let mut bitvector: BitVec<u8> = BitVec::with_capacity(input_string.len() as u64);
            //fill bitvector
            input_string.iter().for_each(|character|
                //assign bitmap 0/1s
                bitvector.push(right_alphabet.contains(&character)));

            //create rankselect structure
            let rs = RankSelect::new(bitvector, super::SUPERBLOCK_SIZE);
            //recusivley create left/right child from substring and partial alphabet
            let left_child = WaveletTreeNode::new(left_string, left_alphabet);
            let right_child = WaveletTreeNode::new(right_string, right_alphabet);
            Some(Box::new(WaveletTreeNode {
                bit_vec: rs,
                left_child,
                right_child,
            }))
        } else {
            //edge case of an empty or single char string is handled in WaveletTree::new
            None
        }
    }

    fn access<T: PartialEq + Copy>(&self, position: u64, alphabet: &[T]) -> Option<T> {
        //output: object at position index
        //check if position is valid
        if self.bit_vec.bits().len() <= position {
            return None;
        }
        //zero/one char alphabet case
        if alphabet.len() <= 1 {
            return Some(alphabet[0]);
        }
        //split alphabet
        let (left_alphabet, right_alphabet) = alphabet.split_at(alphabet.len() / 2);
        //proceed left or right
        if !self.bit_vec.bits()[position] {
            //object from left alphabet
            if let Some(ref lc) = self.left_child {
                //if there is a child go there
                let num = self.bit_vec.rank_0(position).unwrap();
                lc.access(num - 1, &left_alphabet)
            } else {
                Some(left_alphabet[0])
            } //end of recursion
        } else {
            //object from right alphabet
            //access right child
            if let Some(ref rc) = self.right_child {
                //if there is a child go there
                let num = self.bit_vec.rank_1(position).unwrap();
                rc.access(num - 1, &right_alphabet)
            } else {
                Some(right_alphabet[0])
            } //end of recursion
        }
    }

    /// Returns the number of occurences of a character in the sequence until position n
    fn rank<T: PartialEq + Copy>(&self, alphabet: &[T], object: T, n: u64) -> Option<u64> {
        //Determine in which half of the alphabet the character is
        let (left_alphabet, right_alphabet) = alphabet.split_at(alphabet.len() / 2);
        if left_alphabet.contains(&object) {
            //already at leaf level
            if left_alphabet.len() == 1 {
                self.bit_vec.rank_0(n)
            } else {
                if let Some(ref lc) = self.left_child {
                    //recursive rank from the leave
                    match self.bit_vec.rank_0(n) {
                        None => None,
                        //node does not contain alphabet up to n
                        Some(0) => Some(0),
                        Some(i) => lc.rank(left_alphabet, object, i - 1),
                    }
                } else {
                    panic!("rank: There should be a left child but there isn't!");
                }
            }
        } else if right_alphabet.contains(&object) {
            //already at leaf level
            if right_alphabet.len() == 1 {
                self.bit_vec.rank_1(n)
            } else {
                if let Some(ref rc) = self.right_child {
                    //recursive rank from the leave
                    match self.bit_vec.rank_1(n) {
                        None => None,
                        //node does not contain alphabet up to n
                        Some(0) => Some(0),
                        Some(i) => rc.rank(right_alphabet, object, i - 1),
                    }
                } else {
                    panic!("There should be a right child but there isn't!");
                }
            }
        } else {
            //Character is not in alphabet
            None
        }
    }

    fn select<T: PartialEq + Copy>(&self, character: T, n: u64, alphabet: &[T]) -> Option<u64> {
        //output: position of nth character
        //split alphabet
        let (left_alphabet, right_alphabet) = alphabet.split_at(alphabet.len() / 2);
        //if left alphabet contains character
        if left_alphabet.contains(&character) {
            if let Some(ref lc) = self.left_child {
                //if there is a child go there
                match lc.select(character, n, left_alphabet) {
                    //position of the nth character in the left child
                    //+1 because recursive step returned an index while the #of occurences is needed
                    Some(x) => self.bit_vec.select_0(x + 1),
                    None => None,
                }
            } else {
                //there was no child, look for 0s
                self.bit_vec.select_0(n)
            }
        } else if right_alphabet.contains(&character) {
            if let Some(ref rc) = self.right_child {
                //if there is a child go there
                match rc.select(character, n, right_alphabet) {
                    //position of the nth character in the left child
                    //+1 because recursive step returned an index while the #of occurences is needed
                    Some(x) => self.bit_vec.select_1(x + 1),
                    None => None,
                }
            } else {
                //there was no child, look for 1s
                self.bit_vec.select_1(n)
            }
        } else {
            //Character is not in alphabet
            None
        }
    }
}

impl<T: PartialEq + Copy> WaveletTree<T> for WaveletTreePointer<T> {
    /// Returns the element at the index i
    /// Returns None if i is out of bounds
    ///
    /// # Arguments
    ///
    /// * `i` Index of the element, starting at 0
    ///
    /// # Example
    ///
    /// ```
    /// use crate::fp_wavelet_trees::WaveletTree;
    /// let w_tree = fp_wavelet_trees::wavelet_tree_pointer_based::WaveletTreePointer::from("test");
    /// assert_eq!(Some('t'), w_tree.access(0));
    /// assert_eq!(Some('e'), w_tree.access(1));
    /// assert_eq!(Some('s'), w_tree.access(2));
    /// assert_eq!(Some('t'), w_tree.access(3));
    /// assert_eq!(None, w_tree.access(4));
    /// ```
    fn access(&self, position: u64) -> Option<T> {
        self.root_node.access(position, &self.alphabet[..])
    }

    /// Returns the number of occurrences of object up to index n
    /// Returns None if the object doesn't occur at all or n is larger than the length of the content
    ///
    /// # Arguments
    ///
    /// * `object` The object to find the occurrences of
    /// * `n` The index up to which to find occurrences, starting at 0
    ///
    /// # Example
    ///
    /// ```
    /// use crate::fp_wavelet_trees::WaveletTree;
    /// let w_tree = fp_wavelet_trees::wavelet_tree_pointer_based::WaveletTreePointer::from("abababababab");
    /// assert_eq!(w_tree.rank('a', 11), Some(6));
    /// assert_eq!(w_tree.rank('b', 11), Some(6));
    /// assert_eq!(w_tree.rank('b', 0), Some(0));
    /// assert_eq!(w_tree.rank('c', 11), None);
    /// ```
    fn select(&self, object: T, n: u64) -> Option<u64> {
        self.root_node.select(object, n, &self.alphabet[..])
    }

    /// Returns the position of the n-th occurrence of object
    /// Returns None if there isn't a n-th occurrence
    ///
    /// # Arguments
    ///
    /// * `object` The object to find the position of
    /// * `n` The n-th occurrence to find, starting at 1
    ///
    /// # Example
    ///
    /// ```
    /// use crate::fp_wavelet_trees::WaveletTree;
    /// let w_tree = fp_wavelet_trees::wavelet_tree_pointer_based::WaveletTreePointer::from("abcab");
    /// assert_eq!(w_tree.select('a', 0), None);
    /// assert_eq!(w_tree.select('a', 1), Some(0));
    /// assert_eq!(w_tree.select('a', 2), Some(3));
    /// assert_eq!(w_tree.select('c', 1), Some(2));
    /// assert_eq!(w_tree.select('c', 2), None);
    /// ```
    ///
    fn rank(&self, object: T, n: u64) -> Option<u64> {
        self.root_node.rank(&self.alphabet[..], object, n)
    }
}

impl<T: PartialEq + Copy> WaveletTreePointer<T> {
    /// Returns a WavletTree using pointer
    ///
    /// # Arguments
    ///
    /// * `vector` Vec of any objects implementing PartialEq and Copy traits
    ///
    /// # Example
    ///
    /// ```
    /// use fp_wavelet_trees::wavelet_tree_pointer_based::WaveletTreePointer as WTP;
    /// let w_tree:WTP<u32> = WTP::new(vec![1,2,3]);
    /// ```
    pub fn new(vector: Vec<T>) -> WaveletTreePointer<T> {
        //Get distinct objects from vec
        let mut alphabet = Vec::new();
        for v in vector.clone() {
            if !alphabet.contains(&v) {
                alphabet.push(v);
            }
        }

        //edge case of an empty or single char string
        if alphabet.len() < 2 {
            return WaveletTreePointer {
                root_node: {
                    let mut bitvector = BitVec::new();
                    bitvector.resize(vector.len() as u64, true);
                    Box::new(WaveletTreeNode {
                        bit_vec: RankSelect::new(bitvector, super::SUPERBLOCK_SIZE),
                        left_child: None,
                        right_child: None,
                    })
                },
                alphabet,
            };
        }
        //Create tree
        let root_node =
            WaveletTreeNode::new(vector, &alphabet) /* even with an empty string, there should be a node */
                .expect("Without a tree node the WaveletTree will be useless ");

        WaveletTreePointer {
            root_node,
            alphabet,
        }
    }
}

impl PartialEq for WaveletTreeNode {
    fn eq(&self, other: &WaveletTreeNode) -> bool {
        self.bit_vec.bits() == other.bit_vec.bits()
            && self.left_child == other.left_child
            && self.right_child == other.right_child
    }
}

impl PartialEq<&str> for WaveletTreePointer<char> {
    fn eq(&self, other: &&str) -> bool {
        if self.root_node.bit_vec.bits().len() as usize == other.chars().count() {
            for (i, c) in other.chars().enumerate() {
                match self.access(i as u64) {
                    None => return false,
                    Some(c2) => {
                        if c2 != c {
                            return false;
                        }
                    }
                }
            }
            true
        } else {
            false
        }
    }
}

impl<T: PartialEq + Copy> PartialEq<Vec<T>> for WaveletTreePointer<T> {
    fn eq(&self, other: &Vec<T>) -> bool {
        if self.root_node.bit_vec.bits().len() as usize == other.len() {
            for (i, c) in other.iter().enumerate() {
                match self.access(i as u64) {
                    None => return false,
                    Some(c2) => {
                        if *c != c2 {
                            return false;
                        }
                    }
                }
            }
            true
        } else {
            false
        }
    }
}

impl fmt::Debug for WaveletTreeNode {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "WaveletTreeNode {{ {:?}, l:{:?} r:{:?} }}",
            self.bit_vec.bits(),
            self.left_child,
            self.right_child
        )
    }
}

impl From<String> for WaveletTreePointer<char> {
    fn from(input: String) -> Self {
        WaveletTreePointer::new(input.chars().collect())
    }
}

impl From<&str> for WaveletTreePointer<char> {
    fn from(input: &str) -> Self {
        WaveletTreePointer::new(input.chars().collect())
    }
}

impl<T: PartialEq + Copy> From<Vec<T>> for WaveletTreePointer<T> {
    fn from(input: Vec<T>) -> Self {
        WaveletTreePointer::new(input)
    }
}

impl<T: PartialEq + Copy> FromIterator<T> for WaveletTreePointer<T> {
    fn from_iter<I: IntoIterator<Item = T>>(input: I) -> Self {
        WaveletTreePointer::new(input.into_iter().collect())
    }
}

pub struct TreeIteratorPointer<T: PartialEq + Copy> {
    index: usize,
    tree: WaveletTreePointer<T>,
}

impl<T: PartialEq + Copy> Iterator for TreeIteratorPointer<T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        let result = self.tree.access(self.index as u64);
        self.index += 1;
        result
    }
}

impl<T: PartialEq + Copy> IntoIterator for WaveletTreePointer<T> {
    type Item = T;
    type IntoIter = TreeIteratorPointer<T>;

    fn into_iter(self) -> Self::IntoIter {
        TreeIteratorPointer {
            index: 0,
            tree: self,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::WaveletTree;
    use bv::BitVec;
    use bv::BitsMut;
    use unicode_segmentation::UnicodeSegmentation;

    /// # Test with two different letters
    /// This will test for alphabet and child nodes.
    /// The RankSelect Vector will also be tested.
    ///
    #[test]
    fn test_2_letter_tree() {
        let two_tree: WaveletTreePointer<char> = WaveletTreePointer::from("ab"); //("ab".chars());
        let alphabet: Vec<char> = "ab".chars().collect();

        assert_eq!(two_tree.alphabet, alphabet);
        assert_eq!(two_tree.root_node.right_child, None);
        assert_eq!(two_tree.root_node.left_child, None);

        // To Test the bit vector, we create our one (the expected one).
        let mut bits: BitVec<u8> = BitVec::new_fill(false, 2);
        bits.set_bit(0, false);
        bits.set_bit(1, true);

        assert_eq!(*two_tree.root_node.bit_vec.bits(), bits);
    }

    /// # Test with five letters
    /// This will test alphabet and child nodes.
    /// The RankSelect Vector will also be tested.
    ///
    #[test]
    fn test_5_letter_tree() {
        use itertools::Itertools;
        let input_string = "abcda";
        let five_tree: WaveletTreePointer<char> = WaveletTreePointer::from(input_string);
        let alphabet: Vec<char> = input_string.chars().unique().collect();

        assert_eq!(five_tree.alphabet, alphabet);

        // To Test the bit vector, we create our one (the expected one).
        let mut bits: BitVec<u8> = BitVec::new_fill(false, 5);
        //Now set the remaining bits
        bits.set_bit(2, true);
        bits.set_bit(3, true);

        assert_eq!(*five_tree.root_node.bit_vec.bits(), bits);

        // Test if the left node has the correct data for aba
        let left_child = five_tree.root_node.left_child.unwrap();
        let left_child_bits = BitVec::from_bits(&[false, true, false]);
        assert_eq!(*left_child.bit_vec.bits(), left_child_bits);

        // Test if the right node has the correct data for cd
        let right_child = five_tree.root_node.right_child.unwrap();
        let right_child_bits = BitVec::from_bits(&[false, true]);
        assert_eq!(*right_child.bit_vec.bits(), right_child_bits);
    }

    //test for basic creation
    #[test]
    fn test_7_letter_tree() {
        let string: Vec<char> = "abcdefg".chars().collect();
        let seven_tree: WaveletTreePointer<char> = WaveletTreePointer::new(string);
        // let alphabet: Vec<char> = input_string.chars().unique().collect();

        // assert_eq!(seven_tree.alphabet, alphabet);
        assert!(seven_tree.root_node.left_child.is_some());
        assert!(seven_tree.root_node.right_child.is_some());
        let lc = seven_tree.root_node.left_child.unwrap();
        let rc = seven_tree.root_node.right_child.unwrap();
        assert!(lc.left_child.is_none());
        assert!(lc.right_child.is_some());
        assert!(rc.left_child.is_some());
        assert!(rc.right_child.is_some());
        let left_right = BitVec::from_bits(&[false, true]);
        assert_eq!(*lc.right_child.unwrap().bit_vec.bits(), left_right);
    }

    /// Testing tests
    #[test]
    fn test_new() {
        let test_string = "ab";
        let w_tree = WaveletTreePointer::from(test_string);

        let mut bits: BitVec<u8> = BitVec::new_fill(false, 2);
        bits.set_bit(0, false);
        bits.set_bit(1, true);

        let rs = RankSelect::new(bits, crate::SUPERBLOCK_SIZE);
        let wavelet_tree_node = Box::new(WaveletTreeNode {
            bit_vec: rs,
            left_child: None,
            right_child: None,
        });
        let wavelet_tree = WaveletTreePointer {
            alphabet: vec!['a', 'b'],
            root_node: wavelet_tree_node,
        };

        assert_eq!(w_tree, wavelet_tree);
    }

    #[test]
    fn test_access_empty() {
        let w_tree = WaveletTreePointer::from("");

        assert_eq!(None, w_tree.access(0));
    }

    /// Test if a one letter tree shows the correct number
    #[test]
    fn test_access_1_letter() {
        let test_string: Vec<char> = "a".chars().collect();
        let w_tree = WaveletTreePointer::from("a");

        assert_eq!(test_string[0], w_tree.access(0).unwrap());
        assert_eq!(None, w_tree.access(1));
    }

    #[test]
    fn test_access_7_letter() {
        let test_string: Vec<char> = "abcdefg".chars().collect();
        let w_tree = WaveletTreePointer::new(test_string.clone());

        assert_eq!(test_string[0], w_tree.access(0).unwrap());
        assert_eq!(test_string[1], w_tree.access(1).unwrap());
        assert_eq!(test_string[2], w_tree.access(2).unwrap());
        assert_eq!(test_string[4], w_tree.access(4).unwrap());
        assert_eq!(test_string[6], w_tree.access(6).unwrap());
        assert_eq!(None, w_tree.access(7));
    }

    /// Simple Test for select
    #[test]
    fn test_select_basic() {
        let test_string = "cabdacdbabadcab";
        let w_tree = WaveletTreePointer::from(test_string);

        assert_eq!(w_tree.select('c', 2), Some(5));
    }

    //Test for a character outside the alphabet
    #[test]
    fn test_select_outside_alphabet() {
        let test_string = "cabdacdbabadcab";
        let w_tree = WaveletTreePointer::from(test_string);
        assert_eq!(w_tree.select('f', 2), None);
    }

    //Test for index out of bounds
    #[test]
    fn test_select_out_of_bounds() {
        let test_string = "cabdacdbabadcab";
        let w_tree = WaveletTreePointer::from(test_string);

        assert_eq!(w_tree.select('c', 4), None);
    }

    #[test]
    fn test_serialize_deserialize() {
        let test_string = "cbacbcbcbbcabcabcabcabbca";
        let w_tree = WaveletTreePointer::from(test_string);

        let serialized = serde_json::to_string(&w_tree).unwrap();
        let w_tree2: WaveletTreePointer<char> = serde_json::from_str(&serialized).unwrap();

        assert_eq!(w_tree, w_tree2)
    }

    #[test]
    fn test_select_5_letter() {
        let test_string = "abcde";
        let w_tree = WaveletTreePointer::from(test_string);

        assert_eq!(w_tree.select('a', 1), Some(0));
        assert_eq!(w_tree.select('b', 1), Some(1));
        assert_eq!(w_tree.select('c', 1), Some(2));
        assert_eq!(w_tree.select('d', 1), Some(3));
        assert_eq!(w_tree.select('e', 1), Some(4));
    }

    #[test]
    fn test_select_2_letter() {
        let test_string = "ab";
        let w_tree = WaveletTreePointer::from(test_string);

        assert_eq!(w_tree.select('a', 1), Some(0));
        assert_eq!(w_tree.select('b', 1), Some(1));
        assert_eq!(w_tree.select('c', 1), None);
        assert_eq!(w_tree.select('a', 2), None);
        assert_eq!(w_tree.select('b', 3), None);
    }

    #[test]
    fn test_rank_2_letters() {
        //let test_string = "aaaaaaaaaabsbsbdsbdsabb";
        let test_string = "ababababababab";
        let w_tree = WaveletTreePointer::from(test_string);

        assert_eq!(w_tree.rank('a', 0), Some(1));
        assert_eq!(w_tree.rank('b', 0), Some(0));

        assert_eq!(w_tree.rank('a', 6), Some(4));
        assert_eq!(w_tree.rank('b', 6), Some(3));

        assert_eq!(w_tree.rank('a', 13), Some(7));
        assert_eq!(w_tree.rank('b', 13), Some(7));

        assert_eq!(w_tree.rank('b', 17), None);

        assert_eq!(w_tree.rank('c', 5), None);
    }

    #[test]
    fn test_rank_5_letter() {
        let test_string = "abcde";
        let w_tree = WaveletTreePointer::from(test_string);

        assert_eq!(w_tree.rank('a', 0), Some(1));
        assert_eq!(w_tree.rank('b', 1), Some(1));
        assert_eq!(w_tree.rank('c', 2), Some(1));
        assert_eq!(w_tree.rank('d', 3), Some(1));
        assert_eq!(w_tree.rank('e', 4), Some(1));
    }

    #[test]
    fn test_rank_unicode() {
        let test_string = "Hello world, こんにちは世界, Привет, мир";
        let test_string = UnicodeSegmentation::graphemes(test_string, true).collect::<Vec<&str>>();
        let w_tree = WaveletTreePointer::from_iter(test_string);

        //println!("{:#?}", w_tree);
        assert_eq!(w_tree.rank("o", 4), Some(1));
        assert_eq!(w_tree.rank("世", 32), Some(1));
        assert_eq!(w_tree.rank("и", 32), Some(2));

        assert_eq!(w_tree.rank("o", 16), Some(2));
        assert_eq!(w_tree.rank("世", 16), Some(0));
        assert_eq!(w_tree.rank("и", 16), Some(0));

        assert_eq!(w_tree.rank("o", 0), Some(0));
        assert_eq!(w_tree.rank("世", 0), Some(0));
        assert_eq!(w_tree.rank("и", 0), Some(0));

        assert_eq!(w_tree.rank("木", 32), None);
    }

    #[test]
    fn test_fail_management() {
        //test with empty content
        let a = WaveletTreePointer::from("");
        assert_eq!(a.access(0), None);
        assert_eq!(a.rank('a', 0), None);
        assert_eq!(a.select('a', 0), None);
        //out of index wil yield None
        let b = WaveletTreePointer::from("abc");
        assert_eq!(b.access(4), None);
        assert_eq!(b.rank('b', 4), None);
        assert_eq!(b.select('b', 2), None);
        //out of alphabet char will yield None
        assert_eq!(b.rank('d', 1), None);
        assert_eq!(b.select('d', 1), None);
        //select of 0th will be None
        assert_eq!(b.select('a', 0), None);
        //rank can be Some(0)
        assert_eq!(b.rank('c', 1), Some(0));
    }

    #[test]
    fn test_partialeq_str() {
        let test_string = "Hello world, こんにちは世界, Привет, мир";
        let w_tree: WaveletTreePointer<char> = test_string.into();

        //Test if string is equal to tree sequence
        assert!(w_tree == test_string);

        //Test if it returns false for a string that is not equal
        let test_string_wrong = "Hello worlt, こんにちは世界, Привет, мир";
        assert!(w_tree != test_string_wrong);

        //Test if it returns false for a string that is shorter (and thus also inequal)
        let test_string_shorter = "Hello world";
        assert!(w_tree != test_string_shorter);
    }

    #[test]
    fn test_partialeq_vec() {
        let vec = vec![1, 2, 3, 4, 5, 1, 2, 4, 1, 3, 5, 2, 4];
        let w_tree: WaveletTreePointer<i32> = vec.clone().into();

        assert!(w_tree == vec);

        let vec_wrong = vec![1, 2, 3, 4, 5, 1, 2, 4, 1, 3, 7, 2, 4];
        assert!(w_tree != vec_wrong);

        let vec_short = vec![1, 2, 3, 4, 5];
        assert!(w_tree != vec_short);
    }

    #[test]
    fn test_into_iter() {
        let test_str: String = String::from("Hello world");
        let w_tree: WaveletTreePointer<char> = test_str.clone().into();

        test_str.chars().eq(w_tree.into_iter());
    }
}