1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
use bio::data_structures::rank_select::RankSelect;
use bv::BitVec;
use bv::Bits;
use bv::BitsExt;
use serde::{Deserialize, Serialize};
use std::fmt;
use std::iter::FromIterator;

use crate::WaveletTree;
use std::fmt::Debug;

#[derive(Serialize, Deserialize)]
pub struct WaveletTreeCompact<T: PartialEq + Copy> {
    alphabet: Vec<T>,
    bit_vec: RankSelect,
    sequence_len: u64,
}

impl<T: PartialEq + Copy> WaveletTreeCompact<T> {
    /// Creates a new pointer-less WaveletTree on the sequence input
    ///
    /// # Arguments
    ///
    /// * `input` Sequence to build a WaveletTree for
    ///
    /// # Example
    ///
    /// ```
    /// let input = vec![1, 2, 3, 4, 3, 1, 2, 4];
    /// let w_tree = fp_wavelet_trees::wavelet_tree_compact::WaveletTreeCompact::new(input);
    /// ```
    pub fn new(input: Vec<T>) -> WaveletTreeCompact<T> {
        let sequence_len = input.len() as u64;
        //Create alphabet
        let mut alphabet: Vec<T> = Vec::new();
        input.iter().for_each(|x| {
            if !alphabet.contains(&x) {
                alphabet.push(*x);
            }
        });

        //Create vector for levels
        let mut levels: Vec<BitVec<u8>> = Vec::new();

        //Create bitvecs for levels
        if alphabet.len() == 1 {
            let mut local_bitvec = BitVec::new();
            input.iter().for_each(|_x| {
                local_bitvec.push(false);
            });
            levels.push(local_bitvec);
        } else {
            WaveletTreeCompact::create_bitvec(0, &mut levels, &input[..], &alphabet[..]);
        }

        //Append all the levels into one big bitvec
        let mut bit_vec: BitVec<u8> = BitVec::new();
        for l in levels {
            //every layer starts at a multiple of sequence length so layers in betwene must be filled up
            let filler: BitVec<u8> = match l.len() {
                0 => BitVec::new(),
                x => BitVec::new_fill(false, sequence_len - (x as u64)),
            };
            bit_vec = bit_vec.bit_concat(l).to_bit_vec();
            bit_vec = bit_vec.bit_concat(filler).to_bit_vec();
        }

        WaveletTreeCompact {
            alphabet: alphabet.to_owned(),

            bit_vec: RankSelect::new(bit_vec, crate::SUPERBLOCK_SIZE),
            sequence_len,
        }
    }

    /// Helper function for WaveletTreeCompact::new
    /// Creates the bitvecs of the tree.
    fn create_bitvec(level: usize, levels: &mut Vec<BitVec<u8>>, sequence: &[T], alphabet: &[T]) {
        if alphabet.len() >= 2 {
            //Split alphabet

            let (left_alphabet, right_alphabet) = WaveletTreeCompact::split_alphabet(alphabet);

            let mut l_seq = Vec::new();
            let mut r_seq = Vec::new();
            let mut local_bitvec = BitVec::new();

            //Fill left/right sequence and create bitvector for local "node"
            sequence.iter().for_each(|x| {
                if left_alphabet.contains(x) {
                    l_seq.push(*x);
                    local_bitvec.push(false);
                } else {
                    r_seq.push(*x);
                    local_bitvec.push(true);
                }
            });

            //Append to level bitvec
            if !levels.len() > level {
                //Create new for this level
                levels.push(BitVec::new());
            }

            levels[level] = levels[level].bit_concat(local_bitvec).to_bit_vec();

            //Call recursively for childs
            WaveletTreeCompact::create_bitvec(level + 1, levels, &l_seq[..], left_alphabet); //Left needs to be first!!
            WaveletTreeCompact::create_bitvec(level + 1, levels, &r_seq[..], right_alphabet);
        }
    }

    /// Binary rank_0 on [l,r]
    fn rank_0(&self, l: u64, r: u64) -> Option<u64> {
        //include the start index
        let offset = if self.bit_vec.bits()[l] {
            Some(0)
        } else {
            Some(1)
        };
        Some(self.bit_vec.rank_0(r)? - self.bit_vec.rank_0(l)? + offset?)
    }

    /// Binary rank_1 on [l,r]
    fn rank_1(&self, l: u64, r: u64) -> Option<u64> {
        //include the start index
        let offset = if self.bit_vec.bits()[l] {
            Some(1)
        } else {
            Some(0)
        };
        Some(self.bit_vec.rank_1(r)? - self.bit_vec.rank_1(l)? + offset?)
    }

    /// Binary select_0 on [l,r]
    fn select_0(&self, l: u64, r: u64, n: u64) -> Option<u64> {
        //rank_0 of l-1
        let offset = if self.bit_vec.bits()[l] { 0 } else { 1 };
        let rank_lm1 = self.bit_vec.rank_0(l).unwrap() - offset;
        //rank_lm1 0s appear before so +idex will be in the current node or right
        let index = self.bit_vec.select_0(n + rank_lm1);
        //only return if index remains in the node
        match index {
            None => None,
            Some(i) => {
                if i <= r && i >= l {
                    Some(i - l)
                } else {
                    None
                }
            }
        }
    }

    /// Binary select_1 on [l,r]
    fn select_1(&self, l: u64, r: u64, n: u64) -> Option<u64> {
        //rank_1 of l-1
        let offset = if self.bit_vec.bits()[l] { 1 } else { 0 };
        let rank_lm1 = self.bit_vec.rank_1(l).unwrap() - offset;
        //rank_lm1 1s appear before so +idex will be in the current node or right
        let index = self.bit_vec.select_1(n + rank_lm1);
        //only return if index remains in the node
        match index {
            None => None,
            Some(i) => {
                if i <= r && i >= l {
                    Some(i - l)
                } else {
                    None
                }
            }
        }
    }

    /// Helper function that splits the alphabet
    fn split_alphabet<'a>(alphabet: &'a [T]) -> (&[T], &[T]) {
        if alphabet.is_empty() {
            panic!("can not split empty alphabet")
        } else if alphabet.len() == 1 {
            (alphabet, &[])
        } else {
            alphabet.split_at(2usize.pow(((alphabet.len()) as f64).log2().ceil() as u32 - 1))
        }
    }

    /// Helper function for access
    fn access_helper(&self, position: u64, alphabet: &[T], l: u64, r: u64) -> Option<T> {
        if alphabet.len() <= 1 {
            return Some(alphabet[0]);
        }

        if l == r {
            //Reached end
            //return Some(alphabet[0])
            return None;
        }

        assert!(l <= r);

        let (left_alphabet, right_alphabet) = WaveletTreeCompact::split_alphabet(alphabet);
        let pos_rank = self.rank_0(l, r)?;
        if self.bit_vec.get(l + position) {
            //Right child
            let child_l = self.sequence_len + pos_rank + l;
            let child_r = self.sequence_len + r;

            let position = self.rank_1(l, l + position)?;
            self.access_helper(position - 1, right_alphabet, child_l, child_r)
        } else {
            //Left child
            let child_l = self.sequence_len + l;
            let child_r = child_l + pos_rank - 1;

            let position = self.rank_0(l, l + position)?;
            self.access_helper(position - 1, left_alphabet, child_l, child_r)
        }
    }

    /// Helper function for rank
    fn rank_helper(
        &self,
        alphabet: &[T],
        object: T,
        index: u64,
        left: u64,
        right: u64,
    ) -> Option<u64> {
        //Split alphabet
        let (left_alphabet, right_alphabet) = WaveletTreeCompact::split_alphabet(alphabet);
        if left_alphabet.contains(&object) {
            if left_alphabet.len() == 1 {
                //need to account for the left most bit itselfe but can not rely on left>0
                self.rank_0(left, left + index)
            } else {
                if let Some(w) = self.rank_0(left, right) {
                    //in case there is a child,determin boundries
                    let left_child_left = left + self.sequence_len;
                    let left_child_right = left_child_left + w - 1;
                    let pos_in_child = self.rank_0(left, left + index);
                    match pos_in_child {
                        None => None,
                        Some(0) => Some(0),
                        Some(i) => self.rank_helper(
                            left_alphabet,
                            object,
                            i - 1,
                            left_child_left,
                            left_child_right,
                        ),
                    }
                } else {
                    //out of bounds
                    panic!("rank: no child in tree");
                }
            }
        } else if right_alphabet.contains(&object) {
            if right_alphabet.len() == 1 {
                //need to account for the left most bit itselfe but can not rely on left>0
                self.rank_1(left, left + index)
            } else {
                if let Some(w) = self.rank_0(left, right) {
                    //in case there is a child,determin boundries
                    let left_child_left = left + self.sequence_len;
                    let left_child_right = left_child_left + w - 1;
                    let right_child_left = left_child_right + 1;
                    let right_child_right = right + self.sequence_len;
                    let pos_in_child = self.rank_1(left, left + index);
                    match pos_in_child {
                        None => None,
                        Some(0) => Some(0),
                        Some(i) => self.rank_helper(
                            right_alphabet,
                            object,
                            i - 1,
                            right_child_left,
                            right_child_right,
                        ),
                    }
                } else {
                    //out of bounds
                    panic!("rank: no child in tree");
                }
            }
        } else {
            None
        }
    }

    /// Helper function for select
    fn select_helper(
        &self,
        alphabet: &[T],
        object: T,
        index: u64,
        left: u64,
        right: u64,
    ) -> Option<u64> {
        //Split alphabet
        let (left_alphabet, right_alphabet) = WaveletTreeCompact::split_alphabet(alphabet);
        if left_alphabet.contains(&object) {
            if left_alphabet.len() == 1 {
                self.select_0(left, right, index)
            } else {
                if let Some(w) = self.rank_0(left, right) {
                    //in case there is a child,determin boundries
                    let left_child_left = left + self.sequence_len;
                    let left_child_right = left_child_left + w - 1;

                    //position of the nth character in the left child
                    match self.select_helper(
                        left_alphabet,
                        object,
                        index,
                        left_child_left,
                        left_child_right,
                    ) {
                        //+1 because recursive step returned an index while the #of occurences is needed
                        Some(x) => self.select_0(left, right, x + 1),
                        None => None,
                    }
                } else {
                    //out of bounds
                    panic!("rank: no child in tree");
                }
            }
        } else if right_alphabet.contains(&object) {
            if right_alphabet.len() == 1 {
                //panic!("l{} r{} i{}",left,right,index);
                self.select_1(left, right, index)
            } else {
                if let Some(w) = self.rank_0(left, right) {
                    //in case there is a child,determin boundries
                    let left_child_left = left + self.sequence_len;
                    let left_child_right = left_child_left + w - 1;
                    let right_child_left = left_child_right + 1;
                    let right_child_right = right + self.sequence_len;

                    //position of the nth character in the right child
                    match self.select_helper(
                        right_alphabet,
                        object,
                        index,
                        right_child_left,
                        right_child_right,
                    ) {
                        //+1 because recursive step returned an index while the #of occurences is needed
                        Some(x) => self.select_1(left, right, x + 1),
                        None => None,
                    }
                } else {
                    //out of bounds
                    panic!("rank: no child in tree");
                }
            }
        } else {
            None
        }
    }
}

impl<T: PartialEq + Copy> WaveletTree<T> for WaveletTreeCompact<T> {
    /// Returns the element at the index i
    /// Returns None if i is out of bounds
    ///
    /// # Arguments
    ///
    /// * `i` Index of the element, starting at 0
    ///
    /// # Example
    ///
    /// ```
    /// use crate::fp_wavelet_trees::WaveletTree;
    /// let w_tree = fp_wavelet_trees::wavelet_tree_compact::WaveletTreeCompact::from("test");
    /// assert_eq!(Some('t'), w_tree.access(0));
    /// assert_eq!(Some('e'), w_tree.access(1));
    /// assert_eq!(Some('s'), w_tree.access(2));
    /// assert_eq!(Some('t'), w_tree.access(3));
    /// assert_eq!(None, w_tree.access(4));
    /// ```
    fn access(&self, position: u64) -> Option<T> {
        //Check if position is valid
        if position >= self.sequence_len {
            None
        } else {
            self.access_helper(position, &self.alphabet[..], 0, self.sequence_len - 1)
        }
    }

    /// Returns the number of occurrences of object up to index n
    /// Returns None if the object doesn't occur at all or n is larger than the length of the content
    ///
    /// # Arguments
    ///
    /// * `object` The object to find the occurrences of
    /// * `n` The index up to which to find occurrences, starting at 0
    ///
    /// # Example
    ///
    /// ```
    /// use crate::fp_wavelet_trees::WaveletTree;
    /// let w_tree = fp_wavelet_trees::wavelet_tree_compact::WaveletTreeCompact::from("abababababab");
    /// assert_eq!(w_tree.rank('a', 11), Some(6));
    /// assert_eq!(w_tree.rank('b', 11), Some(6));
    /// assert_eq!(w_tree.rank('b', 0), Some(0));
    /// assert_eq!(w_tree.rank('c', 11), None);
    /// ```
    fn rank(&self, object: T, n: u64) -> Option<u64> {
        if n >= self.sequence_len {
            return None;
        }
        self.rank_helper(&self.alphabet[..], object, n, 0, self.sequence_len - 1)
    }

    /// Returns the position of the n-th occurrence of object
    /// Returns None if there isn't a n-th occurrence
    ///
    /// # Arguments
    ///
    /// * `object` The object to find the position of
    /// * `n` The n-th occurrence to find, starting at 1
    ///
    /// # Example
    ///
    /// ```
    /// use crate::fp_wavelet_trees::WaveletTree;
    /// let w_tree = fp_wavelet_trees::wavelet_tree_compact::WaveletTreeCompact::from("abcab");
    /// assert_eq!(w_tree.select('a', 0), None);
    /// assert_eq!(w_tree.select('a', 1), Some(0));
    /// assert_eq!(w_tree.select('a', 2), Some(3));
    /// assert_eq!(w_tree.select('c', 1), Some(2));
    /// assert_eq!(w_tree.select('c', 2), None);
    /// ```
    ///
    fn select(&self, object: T, n: u64) -> Option<u64> {
        if self.sequence_len == 0 {
            return None;
        }
        self.select_helper(&self.alphabet[..], object, n, 0, self.sequence_len - 1)
    }
}

impl<T: PartialEq + Copy + Debug> Debug for WaveletTreeCompact<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(
            f,
            "WaveletTreeCompact {{ alphabet:{:?} bv:{:?}}}",
            self.alphabet,
            self.bit_vec.bits()
        )
    }
}

impl<T: PartialEq + Copy> PartialEq for WaveletTreeCompact<T> {
    fn eq(&self, other: &Self) -> bool {
        self.alphabet == other.alphabet && self.bit_vec.bits() == other.bit_vec.bits()
    }
}

impl PartialEq<&str> for WaveletTreeCompact<char> {
    fn eq(&self, other: &&str) -> bool {
        if self.sequence_len as usize == other.chars().count() {
            for (i, c) in other.chars().enumerate() {
                match self.access(i as u64) {
                    None => return false,
                    Some(c2) => {
                        if c2 != c {
                            return false;
                        }
                    }
                }
            }
            true
        } else {
            false
        }
    }
}

impl<T: PartialEq + Copy> PartialEq<Vec<T>> for WaveletTreeCompact<T> {
    fn eq(&self, other: &Vec<T>) -> bool {
        if self.sequence_len as usize == other.len() {
            for (i, c) in other.iter().enumerate() {
                match self.access(i as u64) {
                    None => return false,
                    Some(c2) => {
                        if *c != c2 {
                            return false;
                        }
                    }
                }
            }
            true
        } else {
            false
        }
    }
}

pub struct TreeIteratorCompact<T: PartialEq + Copy> {
    index: usize,
    tree: WaveletTreeCompact<T>,
}

impl<T: PartialEq + Copy> Iterator for TreeIteratorCompact<T> {
    type Item = T;
    fn next(&mut self) -> Option<T> {
        let result = self.tree.access(self.index as u64);
        self.index += 1;
        result
    }
}

impl<T: PartialEq + Copy> IntoIterator for WaveletTreeCompact<T> {
    type Item = T;
    type IntoIter = TreeIteratorCompact<T>;

    fn into_iter(self) -> Self::IntoIter {
        TreeIteratorCompact {
            index: 0,
            tree: self,
        }
    }
}

impl From<String> for WaveletTreeCompact<char> {
    fn from(input: String) -> Self {
        WaveletTreeCompact::new(input.chars().collect())
    }
}

impl From<&str> for WaveletTreeCompact<char> {
    fn from(input: &str) -> Self {
        WaveletTreeCompact::new(input.chars().collect())
    }
}

impl<T: PartialEq + Copy> From<Vec<T>> for WaveletTreeCompact<T> {
    fn from(input: Vec<T>) -> Self {
        WaveletTreeCompact::new(input)
    }
}

impl<T: PartialEq + Copy> FromIterator<T> for WaveletTreeCompact<T> {
    fn from_iter<I: IntoIterator<Item = T>>(input: I) -> Self {
        WaveletTreeCompact::new(input.into_iter().collect())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use unicode_segmentation::UnicodeSegmentation;

    #[test]
    fn test_new() {
        let w_tree = WaveletTreeCompact::new("alabar_a_la_alabarda".chars().collect());

        println!("{:?}", w_tree);
    }

    #[test]
    fn test_new_split_alphabet() {
        let alphabet: Vec<char> = "abcde".chars().collect();
        let (l, r) = WaveletTreeCompact::split_alphabet(&alphabet[..]);

        assert!(alphabet.len() == 5);
        assert_eq!(l.len(), 4);
        assert_eq!(r.len(), 1);

        let test_string = "abcde".chars().collect();
        let w_tree = WaveletTreeCompact::new(test_string);

        assert_eq!(w_tree.bit_vec.bits()[0], false); //a
        assert_eq!(w_tree.bit_vec.bits()[1], false); //b
        assert_eq!(w_tree.bit_vec.bits()[2], false); //c
        assert_eq!(w_tree.bit_vec.bits()[3], false); //d
        assert_eq!(w_tree.bit_vec.bits()[4], true); //e

        assert_eq!(w_tree.bit_vec.bits()[5], false); //a
        assert_eq!(w_tree.bit_vec.bits()[6], false); //b
        assert_eq!(w_tree.bit_vec.bits()[7], true); //c
        assert_eq!(w_tree.bit_vec.bits()[8], true); //d
        assert_eq!(w_tree.bit_vec.bits()[9], false); //placeholder

        assert_eq!(w_tree.bit_vec.bits()[10], false); //a
        assert_eq!(w_tree.bit_vec.bits()[11], true); //b
        assert_eq!(w_tree.bit_vec.bits()[12], false); //c
        assert_eq!(w_tree.bit_vec.bits()[13], true); //d
        assert_eq!(w_tree.bit_vec.bits()[14], false); //placeholder
    }

    #[test]
    fn test_rank_edge_cases() {
        let one_element = WaveletTreeCompact::new("a".chars().collect());
        assert_eq!(one_element.rank('a', 0), Some(1));
        assert_eq!(one_element.rank('a', 1), None);
        assert_eq!(one_element.rank('b', 0), None);
    }

    #[test]
    fn test_rank_select_0_1() {
        let test_string = "abcde".chars().collect();
        let w_tree = WaveletTreeCompact::new(test_string); //00001 00110

        assert_eq!(w_tree.rank_0(0, 3), Some(4));
        assert_eq!(w_tree.rank_0(0, 4), Some(4));
        assert_eq!(w_tree.rank_0(4, 5), Some(1));
        assert_eq!(w_tree.rank_0(4, 4), Some(0));
        assert_eq!(w_tree.rank_0(3, 3), Some(1));
        assert_eq!(w_tree.rank_1(0, 3), Some(0));
        assert_eq!(w_tree.rank_1(4, 5), Some(1));

        assert_eq!(w_tree.select_0(0, 3, 2), Some(1));
        assert_eq!(w_tree.select_0(3, 5, 2), Some(2));
        assert_eq!(w_tree.select_0(7, 8, 1), None);
        assert_eq!(w_tree.select_1(7, 8, 1), Some(0));
        assert_eq!(w_tree.select_1(2, 5, 3), None);
    }

    #[test]
    fn test_rank_5_letter() {
        let test_string = "abcde".chars().collect();
        let w_tree = WaveletTreeCompact::new(test_string);
        assert_eq!(w_tree.bit_vec.bits().len(), 15);
        assert_eq!(w_tree.rank('a', 0), Some(1));
        assert_eq!(w_tree.rank('b', 1), Some(1));
        assert_eq!(w_tree.rank('c', 2), Some(1));
        assert_eq!(w_tree.rank('d', 3), Some(1));
        assert_eq!(w_tree.rank('e', 4), Some(1));
    }

    #[test]
    fn test_rank_long_sequence_letters() {
        let test_string = "aaaaabbbbbcde".chars().collect();
        let w_tree = WaveletTreeCompact::new(test_string);

        assert_eq!(w_tree.rank('a', 0), Some(1));
        assert_eq!(w_tree.rank('a', 1), Some(2));
        assert_eq!(w_tree.rank('a', 2), Some(3));
        assert_eq!(w_tree.rank('a', 3), Some(4));
        assert_eq!(w_tree.rank('a', 4), Some(5));
        assert_eq!(w_tree.rank('a', 5), Some(5));
        assert_eq!(w_tree.rank('a', 6), Some(5));
        assert_eq!(w_tree.rank('a', 7), Some(5));
    }

    #[test]
    fn test_rank_unicode() {
        let test_string = "Hello world, こんにちは世界, Привет, мир";
        let test_string = UnicodeSegmentation::graphemes(test_string, true).collect::<Vec<&str>>();
        let w_tree: WaveletTreeCompact<&str> = WaveletTreeCompact::new(test_string);

        //println!("{:#?}", w_tree);
        assert_eq!(w_tree.rank("o", 4), Some(1));
        assert_eq!(w_tree.rank("世", 32), Some(1));
        assert_eq!(w_tree.rank("и", 32), Some(2));

        assert_eq!(w_tree.rank("o", 16), Some(2));
        assert_eq!(w_tree.rank("世", 16), Some(0));
        assert_eq!(w_tree.rank("и", 16), Some(0));

        assert_eq!(w_tree.rank("o", 0), Some(0));
        assert_eq!(w_tree.rank("世", 0), Some(0));
        assert_eq!(w_tree.rank("и", 0), Some(0));

        assert_eq!(w_tree.rank("木", 32), None);
    }

    #[test]
    fn test_new_pointer_free() {
        use bv::*;
        let w_tree = WaveletTreeCompact::from("ababababcd");

        let alphabet = vec!['a', 'b', 'c', 'd'];
        let bit_vec = bit_vec![
            false, false, false, false, false, false, false, false, true, true, //First level
            false, true, false, true, false, true, false, true, false, true //Second Level
        ];
        let bit_vec = RankSelect::new(bit_vec, crate::SUPERBLOCK_SIZE);
        let w_tree_expect = WaveletTreeCompact {
            alphabet,
            bit_vec,
            sequence_len: 9,
        };

        assert_eq!(w_tree, w_tree_expect);
    }

    #[test]
    fn test_access_unicode_string() {
        let test_string = "Hello world, こんにちは世界, Привет, мир";
        let w_tree = WaveletTreeCompact::from(test_string);

        for (i, c) in test_string.chars().enumerate() {
            assert_eq!(w_tree.access(i as u64), Some(c));
        }
    }

    #[test]
    fn test_access_invalid_pos() {
        let test_string = "Hello world";
        let w_tree = WaveletTreeCompact::from(test_string);

        assert_eq!(w_tree.access(11), None);
        assert_eq!(w_tree.access(100), None);
    }

    #[test]
    fn test_access_num_vec() {
        let test_vec: Vec<i64> = vec![
            1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 10, 5, 3, 6, 3, 6, 2, 7, 4, 8, -3, -6, -3, -10, -6, 2, 8,
            3, 7, 42, 1024, 2048, 1024, 3, 6, 8, 3,
        ];
        let w_tree = WaveletTreeCompact::new(test_vec.clone());

        //Check if all elements are present
        for (i, c) in test_vec.iter().enumerate() {
            assert_eq!(w_tree.access(i as u64), Some(*c));
        }
    }

    #[test]
    fn test_from_string() {
        let test_string: String = "Test".to_string();
        let w_tree = WaveletTreeCompact::from(test_string.clone());

        //Check if all Elements are present
        for (i, c) in test_string.chars().enumerate() {
            assert_eq!(w_tree.access(i as u64), Some(c));
        }
        //Test that there are no additional elements
        assert_eq!(w_tree.access(test_string.len() as u64), None);
    }

    #[test]
    fn test_select() {
        let test_string = "abcdeb";
        let w_tree = WaveletTreeCompact::from(test_string); //00001 00110 01010

        assert_eq!(w_tree.select('b', 1), Some(1));
        assert_eq!(w_tree.select('b', 2), Some(5));
        assert_eq!(w_tree.select('b', 0), None);
    }

    #[test]
    fn test_serialize_deserialize() {
        let test_string = "cbacbcbcbbcabcabcabcabbca";
        let w_tree = WaveletTreeCompact::from(test_string);

        let serialized = serde_json::to_string(&w_tree).unwrap();
        let w_tree2: WaveletTreeCompact<char> = serde_json::from_str(&serialized).unwrap();

        assert_eq!(w_tree, w_tree2)
    }

    #[test]
    fn test_fail_management() {
        //test with empty content
        let a = WaveletTreeCompact::from("");
        assert_eq!(a.access(0), None);
        assert_eq!(a.rank('a', 0), None);
        assert_eq!(a.select('a', 0), None);
        //out of index wil yield None
        let b = WaveletTreeCompact::from("abc");
        assert_eq!(b.access(4), None);
        assert_eq!(b.rank('b', 4), None);
        assert_eq!(b.select('b', 2), None);
        //out of alphabet char will yield None
        assert_eq!(b.rank('d', 1), None);
        assert_eq!(b.select('d', 1), None);
        //select of 0th will be None
        assert_eq!(b.select('a', 0), None);
        //rank can be Some(0)
        assert_eq!(b.rank('c', 1), Some(0));
    }

    #[test]
    fn test_partialeq_str() {
        let test_string = "Hello world, こんにちは世界, Привет, мир";
        let w_tree: WaveletTreeCompact<char> = test_string.into();

        //Test if string is equal to tree sequence
        assert!(w_tree == test_string);

        //Test if it returns false for a string that is not equal
        let test_string_wrong = "Hello worlt, こんにちは世界, Привет, мир";
        assert!(w_tree != test_string_wrong);

        //Test if it returns false for a string that is shorter (and thus also inequal)
        let test_string_shorter = "Hello world";
        assert!(w_tree != test_string_shorter);
    }

    #[test]
    fn test_partialeq_vec() {
        let vec = vec![1, 2, 3, 4, 5, 1, 2, 4, 1, 3, 5, 2, 4];
        let w_tree: WaveletTreeCompact<i32> = vec.clone().into();

        assert!(w_tree == vec);

        let vec_wrong = vec![1, 2, 3, 4, 5, 1, 2, 4, 1, 3, 7, 2, 4];
        assert!(w_tree != vec_wrong);

        let vec_short = vec![1, 2, 3, 4, 5];
        assert!(w_tree != vec_short);
    }

    #[test]
    fn test_into_iter() {
        let test_str: String = String::from("Hello world");
        let w_tree: WaveletTreeCompact<char> = test_str.clone().into();

        test_str.chars().eq(w_tree.into_iter());
    }
}