1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
use crate::wavelet_tree_pointer_based::*;
use crate::WaveletTree;
use bio::data_structures::rank_select::RankSelect;
use bv::BitVec;

pub trait GraphWithWT {
    /// Creates the bitmap and the WaveletTree from the underlying list (if not done yet)
    /// returns the 'nth_neighbor' of the 'node' or None if there is None
    fn neighbor(&mut self, node: u64, nth_neighbor: u64) -> Option<u64>;
    /// Creates the bitmap and the WaveletTree from the underlying list (if not done yet)
    /// returns the 'nth_reverse_neighbor' of the 'node' or None if there is None
    fn reverse_neigbor(&mut self, node: u64, nth_reverse_neighbor: u64) -> Option<u64>;
}

pub struct WaveletTreeGraph {
    bitmap: Option<RankSelect>,
    wavelet_tree: Option<WaveletTreePointer<u64>>,
}

/// This graph builder is used, because a once created Tree can't be modified effectively.
pub struct WTGraphBuilder {
    size: usize,
    bit_vec: Vec<bool>,
    list: Vec<u64>,
}

impl WTGraphBuilder {
    /// Adds an edge from start_node to end_node
    ///
    /// # Arguments
    ///
    /// * `start_node` id of the first node
    /// * `end_node` id to the second node
    ///
    /// # Example
    ///
    /// ```
    /// # use fp_wavelet_trees::graph_wt::WTGraphBuilder;
    /// # let mut wt_graph_builder = WTGraphBuilder::with_capacities(2);
    /// wt_graph_builder.add_edge(0, 1);
    /// ```
    pub fn add_edge<'a>(
        &'a mut self,
        start_node: u64,
        end_node: u64,
    ) -> Result<&'a mut WTGraphBuilder, &'static str> {
        if self.size <= start_node as usize {
            return Err("start_node not found in graph");
        }
        if self.size <= end_node as usize {
            return Err("end_node not found in graph");
        }
        // contains the index of the (start_node+1)-th '1' in the bit_vec
        let upper_insert_bound = select(&self.bit_vec, start_node + 1);
        if upper_insert_bound != None {
            self.bit_vec
                .insert((upper_insert_bound.unwrap()) as usize, false);
            self.list.insert(
                (upper_insert_bound.unwrap() - start_node - 1) as usize,
                end_node,
            );
        }
        // this is the case if the start_node is the last node
        else {
            self.bit_vec.push(false);
            self.list.push(end_node);
        }
        return Ok(self);
    }

    /// Resolve the Builder to WaveletTreeGraph
    ///
    /// # Example
    /// ```
    /// # use fp_wavelet_trees::graph_wt::WTGraphBuilder;
    ///  let mut wt_graph_builder = WTGraphBuilder::with_capacities(6);
    ///    // Add edges..
    ///  wt_graph_builder.to_graph();
    /// ```
    pub fn to_graph(&self) -> WaveletTreeGraph {
        let bitmap = Some(bool_vec_to_rankselect(&self.bit_vec));
        let wavelet_tree = Some(WaveletTreePointer::new(self.list.clone()));

        WaveletTreeGraph {
            bitmap,
            wavelet_tree,
        }
    }

    /// Create a Builder for WaveletTreeGraphs
    ///
    /// # Arguments
    ///
    /// * `size` is the number of nodes used
    pub fn with_capacities(size: usize) -> Self {
        WTGraphBuilder {
            // fill the bit_vec with as much 'ones' as there are graph nodes
            bit_vec: vec![true; size],
            list: vec![],
            size,
        }
    }
}

impl GraphWithWT for WaveletTreeGraph {
    /// Returns the nth-neigbor of a node in a graph stored in a WaveletTree
    ///
    /// # Arguments
    ///
    /// * `node` The index of the node in the graph whose neigbor is to be searched
    /// * `nth_neighbor` The nth-neigbor (by the order of insertion)
    ///
    /// # Example
    ///
    /// ```
    /// use fp_wavelet_trees::graph_wt::*;
    /// let mut w_builder = fp_wavelet_trees::graph_wt::WTGraphBuilder::with_capacities(6);
    /// w_builder.add_edge(0, 1).expect("Could not add edge to graph");
    /// let mut graph = w_builder.to_graph();
    /// assert_eq!(Some(1), graph.neighbor(0, 1));
    /// ```
    fn neighbor(&mut self, node: u64, nth_neighbor: u64) -> Option<u64> {
        let l = self.bitmap.as_mut().unwrap().select(node + 1);
        if l.is_none() {
            return None;
        }

        let c = self.bitmap.as_mut().unwrap().select(node + 2);
        if c.is_none() {
            return None;
        }

        // The node 'node' has less neighbors than 'nth_neighbor'
        if l.unwrap() >= c.unwrap() - nth_neighbor {
            return None;
        }
        // The node 'node' has no neighbor
        if self.bitmap.as_mut().unwrap().rank_1(l.unwrap() + 1) > Some(node + 1) {
            return None;
        }
        self.wavelet_tree
            .as_mut()
            .unwrap()
            .access(l.unwrap() + nth_neighbor - (node + 1))
    }

    /// Returns the nth-reverse-neigbor of a node in a graph stored in a WaveletTree
    ///
    /// # Arguments
    ///
    /// * `node` The index of the node in the graph whose reverse-neigbor is to be searched
    /// * `nth_reverse_neighbor` The nth-reverse-neigbor (by the order of insertion)
    ///
    /// # Example
    ///
    /// ```
    /// use fp_wavelet_trees::graph_wt::*;
    /// let mut w_builder = fp_wavelet_trees::graph_wt::WTGraphBuilder::with_capacities(6);
    /// w_builder.add_edge(0, 1).expect("Could not add edge to graph");
    /// let mut graph = w_builder.to_graph();
    /// assert_eq!(Some(0), graph.reverse_neigbor(1, 1));
    /// ```
    fn reverse_neigbor(&mut self, node: u64, nth_reverse_neighbor: u64) -> Option<u64> {
        // get the index of the 'nth_reverse_neighbor' of 'node' in the adjacency list
        let p = self
            .wavelet_tree
            .as_mut()
            .unwrap()
            .select(node, nth_reverse_neighbor);
        if p != None {
            // get the index of the 'nth_reverse_neighbor' in the bitmap
            let index_in_bitmap = self.bitmap.as_mut().unwrap().select_0(p.unwrap() + 1);
            if index_in_bitmap != None {
                // get the startnode of the edge to the 'node' (this ist the reverse neigbor)
                let result = self.bitmap.as_mut().unwrap().rank(index_in_bitmap.unwrap());
                if result != None {
                    return Some(result.unwrap() - 1);
                }
                return None;
            }
            index_in_bitmap
        } else {
            p
        }
    }
}

fn select(bit_vec: &Vec<bool>, n: u64) -> Option<u64> {
    let mut i = 0;
    let mut counter = 0;
    loop {
        if i >= bit_vec.len() {
            return None;
        }
        if bit_vec[i] == true {
            if counter == n {
                return Some(i as u64);
            }
            counter += 1;
        }
        i += 1;
    }
}

fn bool_vec_to_rankselect(bit_vec: &Vec<bool>) -> RankSelect {
    let mut bits: BitVec<u8> = BitVec::new();
    for b in bit_vec {
        bits.push(*b);
    }
    RankSelect::new(bits, 1)
}

#[cfg(test)]
mod tests {
    use super::*;

    fn create_sample_graph() -> WaveletTreeGraph {
        let w_builder = fill_wt_builder();

        w_builder.to_graph()
    }

    fn fill_wt_builder() -> WTGraphBuilder {
        let mut w_builder = WTGraphBuilder::with_capacities(6);

        w_builder
            .add_edge(0, 1)
            .expect("Could not add edge to graph");
        w_builder
            .add_edge(0, 3)
            .expect("Could not add edge to graph");
        w_builder
            .add_edge(1, 0)
            .expect("Could not add edge to graph");
        w_builder
            .add_edge(1, 3)
            .expect("Could not add edge to graph");
        w_builder
            .add_edge(1, 2)
            .expect("Could not add edge to graph");
        w_builder
            .add_edge(3, 2)
            .expect("Could not add edge to graph");
        w_builder
            .add_edge(4, 0)
            .expect("Could not add edge to graph");
        w_builder
            .add_edge(4, 3)
            .expect("Could not add edge to graph");

        w_builder
    }

    #[test]
    fn test_add_edge() {
        let graph = fill_wt_builder();

        assert_eq!(graph.list, vec![1, 3, 0, 3, 2, 2, 0, 3]);
        assert_eq!(
            graph.bit_vec,
            vec![
                true, false, false, true, false, false, false, true, true, false, true, false,
                false, true
            ]
        );
    }

    #[test]
    fn test_neighbor() {
        let mut graph = create_sample_graph();

        assert_eq!(None, graph.neighbor(0, 3));
        assert_eq!(Some(3), graph.neighbor(0, 2));
        assert_eq!(Some(1), graph.neighbor(0, 1));

        assert_eq!(None, graph.neighbor(1, 4));
        assert_eq!(Some(2), graph.neighbor(1, 3));
        assert_eq!(Some(3), graph.neighbor(1, 2));
        assert_eq!(Some(0), graph.neighbor(1, 1));

        assert_eq!(None, graph.neighbor(2, 0));

        assert_eq!(None, graph.neighbor(3, 2));
        assert_eq!(Some(2), graph.neighbor(3, 1));

        assert_eq!(None, graph.neighbor(4, 3));
        assert_eq!(Some(3), graph.neighbor(4, 2));
        assert_eq!(Some(0), graph.neighbor(4, 1));

        assert_eq!(None, graph.neighbor(5, 1));
    }

    #[test]
    fn test_reverse_neighbor() {
        let mut graph = create_sample_graph();

        // Reverse neigbors of node 0
        assert_eq!(Some(1), graph.reverse_neigbor(0, 1));
        assert_eq!(Some(4), graph.reverse_neigbor(0, 2));
        assert_eq!(None, graph.reverse_neigbor(0, 3));

        // Reverse neigbors of node 1
        assert_eq!(Some(0), graph.reverse_neigbor(1, 1));
        assert_eq!(None, graph.reverse_neigbor(1, 2));

        // Reverse neigbors of node 2
        assert_eq!(Some(1), graph.reverse_neigbor(2, 1));
        assert_eq!(Some(3), graph.reverse_neigbor(2, 2));
        assert_eq!(None, graph.reverse_neigbor(2, 3));

        // Reverse neigbors of node 3
        assert_eq!(Some(0), graph.reverse_neigbor(3, 1));
        assert_eq!(Some(1), graph.reverse_neigbor(3, 2));
        assert_eq!(Some(4), graph.reverse_neigbor(3, 3));
        assert_eq!(None, graph.reverse_neigbor(3, 4));

        // Reverse neigbors of node 4
        assert_eq!(None, graph.reverse_neigbor(4, 1));

        // Reverse neigbors of node 5
        assert_eq!(None, graph.reverse_neigbor(5, 1));
    }
}